Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus
نویسندگان
چکیده
Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.
منابع مشابه
The Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat
SExtended Abstract Introduction and Objective: Small grain cereals such as wheat, are affected by types of destructive environmental factors such as abiotic and biotic stresses that severely reduce crop yields. To cope with these conditions, transcription factors cause plant resistance to these stresses by activating or suppressing the expression of genes involved in the resistance responses....
متن کاملNAC transcription factors in plant multiple abiotic stress responses: progress and prospects
Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population ...
متن کاملRoles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of...
متن کاملComprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses
NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in t...
متن کاملGenome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (Raphanus sativus L.)
NAC (NAM, no apical meristem; ATAF, Arabidopsis transcription activation factor and CUC, cup-shaped cotyledon) proteins are among the largest transcription factor (TF) families playing fundamental biological processes, including cell expansion and differentiation, and hormone signaling in response to biotic and abiotic stresses. In this study, 172 RsNACs comprising 17 membrane-bound members wer...
متن کامل